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Summary. The inhibitory amino acid taurine has been held to function as an 
osmoregulator and modulator of neural activity, being particularly important 
in the immature brain. Ionotropic glutamate receptor agonists are known 
markedly to potentiate taurine release. The effects of different metabotropic 
glutamate receptor (mGluR) agonists and antagonists on the basal and K +- 
stimulated release of [3H]taurine from hippocampal slices from 3-month-old 
(adult) and 7-day-old mice were now investigated using a superfusion system. 
Of group I metabotropic glutamate receptor agonists, quisqualate potentiated 
basal taurine release in both age groups, more markedly in the immature 
hippocampus. This action was not antagonized by the specific antagonists 
of group I but by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 
6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX), which would 
suggest an involvement of ionotropic glutamate receptors. (S)-3,5- 
dihydroxyphenylglycine (DHPG) potentiated the basal release by a receptor- 
mediated mechanism in the immature hippocampus. The group II agonist 
(2S, 2'R, 3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) markedly 
potentiated basal taurine release at both ages. These effects were antagonized 
by dizocilpine, indicating again the participation of ionotropic receptors. 
Group III agonists slightly potentiated basal taurine release, as did several 
antagonists of the three metabotropic receptor groups. Potassium-stimulated 
(50raM K +) taurine release was generally significantly reduced by mGluR 
agents, mainly by group I and II compounds. This may be harmful to 
neurons in hyperexcitatory states. On the other hand, the potentiation 
by mGluRs of basal taurine release, particularly in the immature 
hippocampus, together with the earlier demonstrated pronounced enhance- 
ment by activation of ionotropic glutamate receptors, may protect neurons 
against excitotoxicity. 
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Abbreviations: ACPD: (l _+ )-l-aminocyclopentane-trans-l,3-dicarboxylate; 
AIDA: (RS)-l-aminoindan-l,5-dicarboxylate; AMPA: 2-amino-3-hydroxy- 
5-methyl-4-isoxazolepropionate; CNQX: 6-cyano-7-nitroquinoxaline-2,3- 
dione; CPPG: (RS)-2-cyclopropyl-4-phosphonophenylglycine; DCG IV: 
(2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine; DHPG: (S)-3,5-dihy- 
droxyphenylglycine; EGLU: (2S)-2-ethylglutamate; L-AP3: L(+)-2-amino-3- 
phosphonopropionate; L-AP4: L(+)-2-amino-4-phosphonobutyrate; L-AP6: 
L(+)-2-amino-6-phosphonohexanoate; L-SOP: O-phospho-L-serine; MPPG: 
(RS)-2-methyl-4-phosphonophenylglycine; MSOP: (RS)-2-methylserine- 
O-phosphate; MSOPPE: (RS)-2-methylserine-O-phosphate monophenyl 
ester; MTPG: (RS)-2-methyl-4-tetrazolylphenylglycine; NBQX: 6-nitro-7- 
sulphamoyl[f]quinoxaline-2,3-dione; NMDA: N-methyl-D-aspartate; QA: 
quisqualate; S-3C4H-PG: (S)-3-carboxy-4-hydroxyphenylglycine; S-4C-PG: 
(S)-4-carboxyphenylglycine; S-MCGP: (S)-2-methyl-4-carboxyphenylglycine. 

Introduction 

The inhibitory amino acid taurine has been thought to function as a regulator 
of neuronal activity, particularly in the immature brain (Kontro and Oja, 
1987; Huxtable, 1992; Sturman, 1993). The involvement of taurine in 
osmoregulation and cell volume adjustments in the central nervous system has 
also been well documented (Solis et al., 1988; Pasantes-Morales and 
Schousboe, 1989; Oja and Saransaari, 1996). Moreover, taurine protects 
neural cells from excitotoxicity induced by excitatory amino acids in the 
hippocampus (French et al., 1986), cerebellum (Trenkner, 1990) and neuronal 
cell cultures (Tang et al., 1996), forestalls harmful metabolic events evoked 
by ischemia or hypoxia (Schurr et al., 1987) and ameliorates symptoms 
in epilepsy (Oja and Kontro, 1983). The hippocampus is involved in many 
important brain functions including generation of long-term potentiation, 
memory formation, learning, arousal, emotions and regulation of autonomic 
functions. The major part of excitatory innervation in the hippocampus, in- 
cluding pyramidal cells, is glutamatergic. The function of these neurons is 
modulated by inhibitory GABA-releasing interneurons (Frotscher et al., 
1984; Freund and Buzsfigi, 1988). The structural analogue of GABA, taurine, 
also abounds in the hippocampus (Kontro et al., 1980; Palkovits et al., 1986) 
and taurine-like immunoreactivity has been located in hippocampal 
interneurons, pyramidal neurons and dentate granule cells (Magnusson et al., 
1989). Taurine inhibits the firing of hippocampal pyramidal neurons by in- 
creasing membrane chloride conductance and causing hyperpolarization 
(Taber et al., 1986). The taurine-synthesizing enzyme, cysteine sulphinate 
decarboxylase, has also been identified in pyramidal basket interneurons 
(Taber et al., 1986). 

It has recently been demonstrated that the ionotropic glutamate receptor 
agonists N-methyl-D-aspartate (NMDA), kainate and 2-amino-3-hydroxy-5- 
methyl-4-isoxazolepropionate (AMPA) evoke taurine release in both the 
adult and the developing hippocampus (Magnusson et al., 1991; Saransaari 
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and Oja, 1996; 1997a,b), the effects being more  p r o n o u n c e d  in the latter 
(Saransaari  and Oja, 1997a). The  h ippocampa l  innervat ion also includes 
me tabo t rop ic  g lutamate  receptors  (mGluRs) ,  a large family of receptors  cou- 
pled to second-messenger  systems via GTP-binding  proteins.  A t  least eight 
m G l u R  subtypes have been  cloned to date, and these receptors  can be divided 
into three  major  groups based on their  pharmacology,  second-messenger  
coupling and sequence homology  (see Pin and Duvoisin,  1995; Conn  and 
Pin, 1997). Recep to r  subtypes mGluRl  and mGluRs,  which m a k e  up group I, 
are coupled  to a G-prote in  which activates phosphol ipase  C, initiating 
phosphoinos i to le  hydrolysis. Recep tors  mGluR2 and m G l u R  3 (group II) are 
negatively coupled  to the adenylate  cyclase system, as are also receptors  
mGluR4, m G l u R  6, m G l u R  7, and mGluRs,  making  up group III. The  
metabo t rop ic  g lu tamate  receptors  are involved in a variety of physiological 
functions in the central nervous  system, particularly in the processes of 
n e u r o m o d u l a t i o n  and synaptic plasticity (see Riedel,  1996; Conn  and Pin, 
1997). So far no data are available as to the possible invo lvement  of 
me tabo t rop ic  g lu tamate  receptors  with the  functions of taurine.  These  inter- 
actions could be of great  impor tance ,  however ,  in view of the protect ive 
effects of taur ine in the h ippocampus .  We now studied the actions of various 
agonists and antagonists of me tabo t rop ic  g lu tamate  receptors  on the release 
of p re loaded  [3H]taurine f rom h ippocampa l  slices f rom 3-month-o ld  (adult) 
and 7-day-old mice, using a superfusion system. 

Materials and methods 

Material 

NMRI mice of both sexes aged 3 months (adults) and 7 days were used throughout. [1,2- 
3H]Taurine (specific radioactivity 1.07 PBq/mol) was obtained from Amersham Interna- 
tional, Bristol, UK. All other drugs were from Tocris Cookson, Bristol, UK. 

Efftux experiments' 

Slices 0.4mm thick weighing 15-20mg were prepared from the hippocampi with a Stadie- 
Riggs tissue slicer and used immediately in efflux experiments. The slices were first 
preloaded for 30 rain with 10/~M (50 MBq/1) [3H]taurine in preoxygenated Krebs-Ringer- 
Hepes-glucose medium (pH 7.4) under 02 and superfused as described in detail in Kontro 
and Oja (1987). The medium was pooled during the first 20 min of superfusion, whereafter 
2-min fractions (0.5ml) were collected. At 30min the medium was in many experiments 
changed to another modified medium. After superfusion the slices were weighed, homog- 
enized in ice-cold 5% (w/v) trichloracetic acid solution and centrifuged, and the clear 
supernatants used for scintillation counting. The effluent samples were likewise counted 
for radioactivity. 

Estimation o f  efflux rate constants 

The desaturation curves of labelled taurine from the slices were plotted as a function of 
time on the basis of the radioactivities remaining in the slices after superfusion and 
recovered in the collected superfusate fractions (Kontro and Oja, 1987). The efflux rate 
constants of taurine for the time intervals of 20 to 30min (kl) and 34 to 50min (k2) were 
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computed as negative slopes for the regression lines of the logarithm of radioactivity 
remaining in the slices vs. superfusion time. 

Statistical calculations 

The presence of statistically significant differences between the sample means was de- 
tected by variance analysis. Comparisons of individual means were made by Hartley's 
sequential method of testing. 

Resul t s  

The basal release of [3H]taurine from hippocampal slices from adult mice 
was not affected by the group I metabotropic glutamate receptor agonists 
(l+)-l-aminocyclopentane-trans-l,3-dicarboxylate) (trans-ACPD) and (S)- 
3,5-dihydroxyphenylglycine (DHPG) (both 0.1mM) (data not shown). 
Quisqualate (0.1mM) stimulated the release; more effectively in the imma- 
ture than in the adult hippocampus (Fig. 1). The effect was clearly concentra- 
tion-dependent at a 0.1I~M-500/aM concentration of quisqualate (Fig. 1). The 
action of quisqualate (0.1 mM) was not affected by the group I antagonists, 
(S)-2-methyl-4-carboxyphenylglycine (S-MCGP), (RS)-l-aminoindan-l,5- 
dicarboxylate (AIDA), (S)-4-carboxyphenylglycine [(S)-4C-PG] and L(+)-2- 
amino-3-phosphonopropionate (L-AP3) (all 0.1raM) and by the ionotropic 
receptor antagonists (6-cyano-7-nitroquinoxaline-2,3-dione) (CNQX) and 
6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX) in the adult 
hippocampus (data not shown). In the immature hippocampus CNQX and 
NBQX reduced the quisqualate-stimulated release, but did not abolish it (Fig. 
2A). Trans-ACPD (0.1mM) had no effect in the immature hippocampus 
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Fig. 1. Concentration-dependence of the stimulation of taurine release by quisqualate 
(-©-) and DCG IV (-Q-) from hippocampal slices from 7-day-old (A) and 3-month-old 
(g) mice. The results are efflux rate constants k 2 (34-50min) +_ SEM as percentages of the 
corresponding rate constants k1 (20-30min). Number of independent experiments 4-8 
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(data not shown), but DHPG (0.1 mM) potentiated the basal release by about 
28% (Fig. 2B). The effect of DHPG was significantly reduced by 0.1mM 
AIDA and S-MCGP (Fig. 2B). Moreover, the antagonists AIDA and (S)-4C- 
PG (both 0.1 mM) slightly stimulated taurine release in the adults, whereas L- 
AP3, AIDA and (S)-3-carboxy-4-hydroxyphenylglycine [(S)-3C4H-PG] were 
effective in the 7-day-olds (Fig. 3). 
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Fig. 2. Effects of the antagonists of glutamate receptors (all 0.1 raM) on the 0.1mM 
quisqualate-(Ctr) (A) and 0.1 mM DHPG-(Ctr) (B) stimulated taurine release from the 
hippocampi of 7-day-old mice. The bars depict the efflux rate constants k: (34-50rain) _+ 
SEM as percentages of the rate constants k I (20-30rain). Number of independent experi- 
ments 4-8. Significance of differences from the control: *p < 0.01. For the names of the 
substances see Abbreviations. The dashed lines indicate the basal unstimulated release 
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Fig. 3. Effects of antagonists (all 0.1 mM) of group i metabotropic glutamate receptors on 
hippocampal taurine release in 7-day-old (A) and 3-month-old (B) mice. The bars depict 
the efflux rate constants k2 (34-50min) _+ SEM as percentages of the rate constants k, (20- 
30rain). The bars are FI control, [] L-AP3, • AIDA, ~ S-4C-PG, [] S-3CH-PG (see 
Abbreviations). Number of independent experiments 4-8. Significance of differences 

from the corresponding control: *p < 0.05 
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Fig. 4. Taurine release from hippocampal slices from 7-day-old (A) and 3-month-old (B) 
mice in the presence of 0.l mM DCG IV (-©-) and DCG IV together with dizocilpine 
(0.1 raM) (-0-). The drugs were added to the superfusion medium at 30min as indicated 

by the arrow. The results are mean values + SEM of 4-8 separate experiments 

Of the group II metabotropic glutamate receptor agonists, (S)-4C-PG 
(0.1 mM) had no effect on the basal taurine release, but (2S,2'R,3'R)-2-(2', 
3'-dicarboxycyclopropyl)glycine (E)CG IV) markedly and concentration- 
dependently potentiated the release in both adult and developing 
hippocampus (Fig. 1). This effect was striking in the 7-day-olds. The 
potentiation by 0.1raM DCG IV was almost totally abolished by 0.1mM 
dizocilpine in both age groups studied (Fig. 4), while the antagonists 
(RS)-2-methyl-4-tetrazolylphenylglycine (MTPG), (2S)-2-ethylglutamate 
(EGLU), S-MCPG and (RS)-2-methylserine-O-phosphate monophenyl ester 
(MSOPPE) (all 0.1mM) had no effect on tile DCG IV -stimulated release 
(data not shown). Of these antagonists, 0.1raM EGLU stimulated basal 
taurine release by 18.4 + 0.6% and 32.8 + 0.5% (mean + SEM, n = 4) in the 
adult and developing hippocampus, respectively. Furthermore, 0.1mM 
MSOPPE potentiated the basal release by 38.1 + 2.9% (mean + SEM, n = 4) 
in the immature hippocampus and 0.1raM S-MCPG by 26.0 _+ 1.6% (mean +_ 
SEM, n = 4) in the adult animals. 

The group III agonist L(+)-2-amino-4-phosphonobutyrate (L-AP4) 
(0.1raM) slightly stimulated (14.4 + 0.2%, mean + SEM, n = 4) the basal 
taurine release in the immature hippocampus. Another group III agonist O- 
phospho-L-serine (L-SOP) (0.1 raM) also significantly potentiated the release 
at both ages (Fig. 5), which effects were not significantly modified by the 
antagonists (RS)-2-methyl-4-phosphonophenylglycine (MPPG) and (RS)-2- 
methylserine-O-phosphate (MSOP) (both 0.1 mM). The antagonist (RS)-2- 
cyclopropyl-4-phosphonophenylglycine (CPPG) (0.1mM) abolished the 
action of L-SOP in the adults, but not in the developing mice (Fig. 5). Of these 
antagonists, 0.1 mM MPPG and MSOP, when applied alone, stimulated (p < 
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Fig. S. Effects of antagonists (all 0.1 mM) of group III metabotropic glutamate receptors 
on hippocampal taurine release enhanced by L-SOP (0.1mM) in 7-day-old (A) and 3- 
month-old (B) mice. The bars depict the efflux rate constants k2 (34-50min) _+ SEM as 
percentages of the rate constants k~ (20-30rain). The bars are II basal release, ~ L-SOP 
alone (control), ~ L-SOP + MPPG, [] L-SOP + MSOP, • L-SOP + CPPG (see 
Abbreviations). Number of independent experiments 4-8. Significance of differences 

from the corresponding controls: *p < 0.05, **p < 0.01 

0.01) basal taurine release in the adults, 19.3 _+ 0.3% (mean _+ SEM, n = 8) 
and 17.8 + 0.3% (mean _+ SEM, n = 4), respectively. 

Potassium stimulation by 50ram K + potentiated hippocampal taurine re- 
lease about 2-fold in the adults and 8-fold in the 7-day-olds (Table 1). The 
group I metabotropic agonists trans-ACPD and quisqualate did not affect this 
stimulated release, but the antagonists S-3CH-PG, S-4C-PG (both 0.1raM) 
and A I D A  (0.1 and 0.01raM) significantly reduced it in the adult 
hippocampus and S-3CH-PG and S-4C-PG (both 0.1raM) in the immature 
animals (Table 1). A lower concentration (0.01 raM) of 3CH-PG and S-4C-PG 
had no effect on the stimulated release. DCG IV (0.1 raM) ahnost doubled the 
K+-stimulated release in the developing hippocampus without any effect in 
the adults (Table 1). Furthermore,  of the drugs acting at the group III 
receptors, MSOP significantly potentiated stimulated taurine release in the 7- 
day-olds, while L-SOP, MPPG and MSOP (all 0.1 raM) inhibited this release 
in the adults (Table 1). 

D i s c u s s i o n  

In situ localization of mRNAs  encoding the different mGluRs has shown that 
all subtypes are present in the hippocampus (Abe et al., 1992; Shigemoto et 
al., 1992; 1996; Fotuhi et al., 1994; Nakanishi et al., 1994), demonstrat ing 
differential presynaptic localization. Presynaptic mGluRs regulating the re- 
lease of excitatory amino acids have been found in both in vitro and in vivo 
release studies in various brain-slice and synaptosomal preparations (Herrero 
et al., 1994; Lombardi  et al., 1994; 1996; East et al., 1995). The compounds 
affecting mGluRs were also now able to modify hippocampal taurine release 
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Table 1. Effects of agonists and antagonists of metabotropic glutamate receptors on 
the potassium-stimulated taurine release in mouse hippocampal slices 

Substance (mM) Efflux rate constants k 2 (34-50min) (% of kl) 

7-day-old 3-month-old 

None (control) 638.9 _+ 62.1 (16) 159.0 _+ 6.2 (10) 

Group I 
trans-ACPD 0.1 460.9 +_ 41.9 (8) 150.2 +_ 11.7 (4) 
QA 0.1 614.6 +_ 45.5 (4) 141.9 +_ 4.1 (4) 
S-3CH-PG 0.1 369.4 _+ 43.4* (4) 132.4 _+ 7.7* (4) 
S-3CH-PG 0.01 635.7 _+ 31.0 (4) - 
S-4C-PG 0.1 294.2 + 14.1" (4) 127.7 +_ 4.7* (4) 
S-4C-PG 0.01 641.8 _+ 36.8 (4) - 
AIDA 0.1 664.6 + 69.6 (4) 121.4 _+ 4.1"* (7) 
AIDA 0.01 - 120.7 _+ 5.0** (4) 
DHPG 0.1 584.6 _+ 58.1 (4) 162.1 + 4.1 (4) 

Group I1 
DCG IV 0.1 1377.6 -+ 88.3** (6) 150.6 _+ 9.7 (4) 
DCG IV 0.01 476.0 _+ 51.1 (6) 149.4 _+ 6.8 (4) 
MSOPPE 0.1 776.5 + 62.2 (4) 145.7 +_ 6.8 (4) 

Group I11 
L-AP4 0.1 537.9 -+ 56.6 (12) 137.0 + 12.6 (8) 
LSOP 0.1 826.9 +_ 61.5 (4) 126.2 +_ 5.0* (4) 
LSOP 0.01 - 142.5 _+ 14.3 (4) 
MPPG 0.1 769.2 _+ 86.3 (4) 124.3 _+ 9.8* (5) 
MPPG 0.01 - 122.9 + 7.2* (4) 
MSOP 0.1 932.2 -+ 98.8* (4) 125.1 + 8.9* (4) 
MSOP 0.01 - 128.4 _+ 1.9" (4) 

The slices were preloaded for 30min in Krebs-Ringer-Hepes-glucose medium, pH 7.4, 
with 10aM [3H]taurine and then superfused for 50min, from 30min onwards with 50 mM 
K ' together with the above substances. The results are percentages of the basal efflux rate 
constant (k, 20-30min) of each slice. Number of independent experiments in parentheses. 
Significance of differences from the corresponding controls: *p < 0.05, **p < 0.01. For the 
names of the substances used see Abbreviations. 

in both  the  adul t  and the  deve lop ing  h ippocampus ,  a l though the act ions were  
not  so p r o n o u n c e d  as those  of  iono t rop ic  g lu tamaterg ic  agents  (Magnusson  et 
al., 1991; Saransaar i  and Oja,  1996; 1997a). The  act ivat ion of  N M D A  and 
A M P A  classes of  g lu tamate  r ecep to r s  is involved  in h i ppocampa l  taur ine  
re lease  t h r o u g h o u t  the  l ife-span of  mice,  while the  ka ina te  r e c e p t o r - m e d i a t e d  
re lease  does  no t  func t ion  in adul ts  (Saransaar i  and Oja,  1997a). The  variabil- 
ity now obse rved  in the  responses  of  taur ine  re lease  to the  m e t a b o t r o p i c  
g lu tamaterg ic  agents  might  be  due  bo th  to the  he t e rogene i t y  of  the  m G l u R s  
and the cons iderab le  over lap  of  the  selectivi ty of  the  drugs used  (Schoepp  and 
Conn,  1993; Pin and Duvois in ,  1995; Conn  and Pin, 1997). M o r e o v e r ,  there  
may  occur  cross- talk b e t w e e n  the d i f ferent  r e c e p t o r  subtypes ,  as has b e e n  
shown for  example  b e t w e e n  g roup  I and I i  r ecep to r s  in the neona ta l  rat cor tex  
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(Schaffhauser et al., 1997), which complicates interpretations. In addition to 
this, a developmental change from inhibition to facilitation has been demon- 
strated in the control of glutamate release by mGluRs, nerve terminals from 
young animals exhibiting both inhibitory and facilitatory pathways (Herrero 
et al., 1996; 1998). 

In general, the metabotropic glutamatergic agents may modify taurine 
release by means of at least three mechanisms. First, the activation of 
presynaptic heteroreceptors on nerve terminals could affect taurine release in 
the same manner as presynaptic mGluRs reduce GABA release and inhibi- 
tory synaptic transmission in several brain areas (Hayashi et al., 1993; Desai et 
al., 1994; Salt and Eaton, 1995; Schaffhauser et al., 1998), including the 
hippocampus (Gereau and Conn, 1995; Poncer et al., 1995). Second, the 
activation of glutamate autoreceptors enhances glutamate release, which 
could then subsequently evoke taurine release through the ionotropic 
receptors. Third, multisynaptic mechanisms may also be involved. In this case 
the agonists increase the firing rate of local circuit neurons or activate feed- 
back loops, indirectly stimulating or inhibiting taurine release. 

Of the group I agonists, quisqualate is also a potent AMPA receptor 
agonist (Schoepp et al., 1990) and may also mediate a persistent sensitization 
of L(+)-2-amino-6-phosphonohexanoate (L-AP6) and L-AP4 ('quis-effect') 
by its own receptor type coupled to phosphoinositol hydrolysis (Littman et al., 
1995). This drug potentiated taurine release in the adult hippocampus, which 
action was not mediated by glutamate receptors, since the antagonists of both 
metabotropic and ionotropic receptors were not able to reduce it. The pro- 
nounced, concentration-dependent enhancement of taurine release by 
quisqualate in the immature hippocampus is not mediated by metabotropic 
receptors. The antagonism by CNQX and NBQX bespeaks the involvement 
of ionotropic receptors in the release. On the other hand, the stimulation of 
release by DHPG in the developing hippocampus was reduced by these 
antagonists, being thus apparently mediated by group I metabotropic 
receptors. DHPG has been described as a selective agonist of the 
metabotropic glutamate receptor coupled to phospholipase C (Thomsen et 
al., 1994), effectively stimulating phosphoinositide hydrolysis in different 
brain regions also in the developing brain (Schaffhauser et al., 1997; Sacaan et 
al., 1998). The level of mGluR1 expression gradually increases in the brain 
during early postnatal development with the maturation of neuronal elements 
(Shigemoto et al., 1992). Moreover, the expression of mGlusa-receptor mRNA 
is higher in early postnatal life than in adults, where mGlusb-receptor mRNA 
is predominant (Minakami et al., 1995). The observed DHPG effect in 
the immature hippocampus could thus be due to this developmental 
overexpression of mGluR1 receptors. 

Group I receptors are known generally to increase neuronal excitation 
and excitability (see Nicoletti et al., 1996). Indeed, the mGluRs of group ! 
have been shown to synergize with NMDA receptors in inducing neuronal 
damage (McDonald and Schoepp, 1992; Sacaan and Schoepp, 1992) and 
quisqualate and DHPG enhance NMDA toxicity in cultured neurons 
(Buisson and Choi, 1995). At variance with these findings group I mGluRs 
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also inhibit synaptic transmission in the hippocampus through a presynaptic 
mechanism (Gereau and Conn, 1995; Manzoni and Bockaert, 1995). 
Thus, the enhanced taurine release by mGluR I activation may reduce 
hyperexcitation or strengthen the inhibitory effects, being thus in both 
cases neuroprotective. Although these effects are not very marked they 
may nevertheless contribute to neuroprotection due to the considerable 
enhancement of taurine release evoked by the ionotropic receptors in cell- 
damaging conditions (Saransaari and Oja, 1997b), particularly in the imma- 
ture hippocampus. 

The activation of group II and III mGluRs generally reduces synaptic 
excitation and it has been suggested that they function as inhibitory 
autoreceptors (see Nicoletti et al., 1996; Sfinchez-Prieto et al., 1996). For 
example, the mGluR II receptors tonically inhibit glutamate release from 
corticostriatal terminals (Cozzi et al., 1997). The agonists of both group II and 
III receptors are neuroprotective. DCG IV and other agonists protect cul- 
tured neurons against degeneration induced by excitotoxic concentrations of 
NMDA or kainate (Bruno et al., 1994; 1995). The activation of mGluRs of 
groups II and iII by L-AP4 and L-SOP also produces neuroprotective effects 
in neurons and brain slices (Bruno et al., 1995; Maiese et al., 1995). The 
marked concentration-dependent stimulation of basal taurine release by 
DCG IV appears not to be mediated by the activation of group II receptors, 
since their specific antagonists failed to have any effect. In contrast, 
dizocilpine, the potent NMDA receptor antagonist, almost blocked the DCG 
IV effect in both age groups studied, indicating the involvement of ionotropic 
receptors. Indeed, DCG IV is known to behave as an NMDA receptor 
agonist, activating the NMDA-sensitive receptors at concentrations higher 
than 10/~M (Wilsch et al., 1994; Uyama et al., 1997). The NMDA-evoked 
taurine release is strikingly large in the immature hippocampus (Saransaari 
and Oja, 1997a), which would corroborate the suggestion that ionotropic 
receptors participate in this release. 

An inhibitory presynaptic mGluR sensitive to the group III agonist L-AP4 
has been described in synaptosomal preparations (Jones and Roberts, 1990; 
Vazquez et al., 1995), consistent with the developmentally regulated depres- 
sion of synaptic transmission by L-AP4 in the hippocampus (Baskys and 
Malenka, 1991). In accordance, the Ca2÷-dependent release of glutamate has 
been reduced by L-AP4 in a concentration-dependent manner (Herrero et al., 
1996). The small stimulation of taurine release in the immature hippocampus 
by both L-AP4 and L-SOP may contribute to the above depression, though 
the effects seem not to be receptor-regulated. On the other hand, in the adults 
the L-SOP effect may be mediated by group III receptor activation, since the 
antagonist CPPG totally abolished it. Moreover, suppression of the activities 
of both group II and Il l  receptors by their respective antagonists also slightly 
stimulated taurine release in the adults. Taken together, however, the small 
potentiations of taurine release by both group II and III receptors seem to be 
of minor importance in regulating hippocampal excitability. The small effects 
on the release could be due to inhibition of glutamate release by the 
autoreceptors. 



Metabotropic glutamate receptors and taurine release 175 

While the basal taurine release was generally potentiated by different 
mGluRs, the potassium-stimulated release was inhibited by several mGluR 
agonists, group I and III compounds being active in this respect. A reduction 
in the evoked release of glutamate and aspartate by group II and Il l  receptor 
activation has been observed in some brain preparations in vitro and in vivo 
(Lombardi et al., 1993; 1994; 1995; East et al., 1995; Battaglia et al., 1997; Lada 
et al., 1998). These findings are in keeping with a number of previous reports 
demonstrating an inhibitory effect of metabotropic receptor activation upon 
stimulation. For example, ACPD has reduced NMDA-induced toxicity in 
cortical cultures (Ambrosini et al., 1995) and blocked the activation of 
dopamine release by electrical stimulation (Tabe and Fibiger, 1995) and by 
K+-stimulation in the striatum (Verma and Moghaddam, 1998). This indicates 
that during hyperexcitation the activation of mGluRs may be a mechanism to 
reduce excitatory amino acid release, thus counteracting hyperactivity. On the 
other hand, in concert with taurine release the K÷-stimulated GABA release 
has also been suppressed by group II and iII receptors in rat cortical cultures 
(Schaffhauser et al., 1998). This reduction in inhibitory amino acid release 
could be harmful and contribute to excitotoxic damage and neuronal degen- 
eration. The potentiation of K+-evoked taurine release by DCG IV in the 
immature hippocampus could be due to the additive effects of membrane 
depolarization and opening of the NMDA receptor-gated ion channels by 
DCG IV and may not reflect any actions of mGluRs. 
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